Все еще не понимаете, что такое биткойн?

Все еще не понимаете, что такое биткойн? Давайте разбираться вместе

Растущая цена биткойна — эта виртуальная валюта в настоящее время стоит больше 250 миллиардов долларов — привлекла много внимания за последние недели. Но реальная ценность биткойна отнюдь не в его растущей ценности. А в технологическом прорыве, который вообще позволил сформироваться этой сети. До сих пор неизвестный изобретатель Биткойна, которого упоминают под псевдонимом Сатоши Накамото, разработал совершенно новый способ создания децентрализованной сети с консенсусом относительно общей книги транзакций. Это нововведение стало возможным благодаря полностью децентрализованной системе электронных платежей, о которых десятилетиями мечтали цифропанки.

 

Как работает биткойн? Как цифровые подписи позволяют проводить виртуальные платежи? Как изобретение Накамото решает проблему двойного расходования, которая ограничивала предыдущие попытки создания цифровой валюты? Какое будущее ждет биткойн? Обо всем по порядку.

Криптовалюты стали возможными благодаря асимметричному шифрованию

До 1970-х годов все общеизвестные схемы шифрования были симметричными: получатель зашифрованного сообщения должен был использовать такой же секретный ключ, чтобы расшифровать сообщение, какой использовал отправитель для шифрования. Но все изменилось с появлением асимметричных схем шифрования. Это были схемы, в которых ключ для дешифрации сообщения (известный как закрытый/личный/частный/приватный ключ, private key) отличался от ключа, который был нужен для шифрования (публичный/открытый/общий ключ, public key) — и не было практического способа узнать приватный ключ, имея в распоряжении публичный.

Уитфилд Диффи, важный человек в развитии криптографии в 70-х

Это означает, что вы могли бы спокойно раскрывать свой публичный ключ, позволяя использовать его для шифрования сообщения, которое только вы, как обладатель приватного ключа, сможете расшифровать. Этот прорыв изменил область криптографии, потому что стало очевидно, что два любых человека могут безопасно общаться по незащищенному каналу, не беспокоясь, что их сможет прочитать кто-то еще.

У асимметричного шифрования было и другое новаторского применение: цифровые подписи. В обычной криптографии с открытым ключом отправитель шифрует сообщение открытым ключом получателя, а получатель расшифровывает его своим приватным ключом. Но ведь это можно и перевернуть: когда отправитель шифрует сообщение собственным ключом, а получатель расшифровывает его с помощью открытого ключа отправителя.

Это не защищает секретность сообщения, поскольку любой может получить открытый ключ. Но это обеспечивает криптографическое доказательство того, что сообщение было создано владельцем приватного ключа. Любой, у кого есть публичный ключ, может проверить доказательство и не зная секретного ключа.

Очень скоро люди поняли, что эти цифровые подписи могут сделать возможной криптографически защищенные цифровые деньги. Используя классический пример, давайте предположим, что у Алисы есть монета и она хочет передать ее Бобу.

Она пишет сообщение: «Я, Алиса, передаю свою монету Бобу», и затем подписывает сообщение своим собственным приватным ключом. Теперь Боб — или кто-нибудь еще — может расшифровать подпись, используя публичный ключ Алисы. Поскольку только Алиса могла создать защищенное сообщение, Боб может использовать это для демонстрации того, что монета теперь принадлежит ему.

Если Боб хочет передать монету Кэрол, он последует такой же процедуре и провозгласит, что передает монету Кэрол, зашифровав сообщение своим личным ключом. Кэрол может использовать эту цепочку подписей — подпись Алисы, передающей монету Бобу, и подпись Боба, передающего монету Кэрол, — как доказательство того, что она владеет этой монетой.

Обратите внимание, что ничто из этого не требует официального третьего лица для авторизации или аутентификации транзакций. Алиса, Боб и Кэрол могут генерировать свои пары публичных-приватных ключей без помощи третьих лиц. Любой, кто знает открытые ключи Алисы и Боба, может самостоятельно проверить, действительна ли криптографически цепочка подписей. Цифровые подписи — в сочетании с несколькими нововведениями, которые мы обсудим позже, — позволяют людям заниматься банковской деятельностью, не нуждаясь в банке.

Как работают биткойновые транзакции

Общая схема цифровых денежных средств, описанная в предыдущем разделе, очень близка к тому, как работают реальные биткойн-платежи. Вот упрощенная схема того, как выглядят настоящие транзакции биткойнов:

Биткойновая транзакция содержит список вводов и выводов. Каждый вывод связан с определенным публичным ключом. Чтобы последняя транзакция потратила эти монеты, ей нужен ввод с соответствующей цифровой подписью. Биткойн использует криптографию эллиптических кривых для цифровых подписей.

Например, предположим, что у вас есть закрытый ключ, соответствующий Public Key D на диаграмме выше. Кто-то хочет отправить вам 2,5 биткойна. Этот кто-то создает транзакцию вроде Transaction 3 с 2,5 биткойнами, идущими к вам — владельцу открытого ключа D.

Когда вы будете готовы потратить эти биткойны, вы создадите новую транзакцию вроде Transaction 4. Вы перечислите Transaction 3, вывод 1 как источник средств (выводы индексируются нулями, поэтому вывод 1 будет вторым выходом). Вы используете свой секретный ключ для генерации Signature D, подписи, которую можно проверить с помощью открытого ключа D. Эти 2,5 биткойна теперь разделены между двумя новыми выводами: 2 биткойна к Public Key E и 0,5 биткойна к Public Key F. Теперь их можно потратить только владельцами соответствующих секретных ключей.

Транзакция может иметь несколько вводов, и она должна тратить все биткойны из соответствующих выводов предыдущих транзакций. Если транзакция выводит меньше биткойнов, чем принимает, разница рассматривается как плата за транзакцию (комиссия), получаемая майнером биткойнов, который обработал транзакцию. Подробнее об этом позже.

В сети биткойнов адреса, которые люди используют для отправки друг другу биткойнов, извлекаются из открытых ключей вроде Public Key D. Точные сведения о формате адреса биткойна сложны и со временем меняются, но биткойн-адрес можно представить как хеш (короткая и случайная цепочка битов, которая служит криптографическим отпечатком) публичного ключа. Биткойновые адреса закодированы в пользовательском формате Base58Check, который минимизирует риск опечатки. Типичный биткойновый адрес выглядит так: 18ZqxfuymzK98G7nj6C6YSx3NJ1MaWj6oN.

Эта транзакция берет 6,07 биткойна с одного адреса ввода и делит их между двумя адресами вывода. Один адрес вывода получает чуть больше 5 биткойнов, а другой — чуть меньше 1 биткойна. Что более вероятно, один из этих адресов вывода принадлежит отправителю — посылает «изменение» самому себе — а другой принадлежит третьему лицу.

Конечно, настоящие биткойновые транзакции могут быть намного сложнее простых примеров, которые показаны выше. Возможно, самой важной функцией, не проиллюстрированной выше, будет то, что вместо публичного ключа вывод может иметь сценарий подтверждения, написанный простым скриптовым языком, специфичным для биткойна. Чтобы потратить этот вывод, последующая транзакция должна иметь параметры, позволяющие этому скрипту оценивать значение true (истина).

Это позволяет биткойновой сети внедрять произвольно сложные условия, определяющие, как можно потратить деньги. Например, сценарий может потребовать три различных подписи, хранящиеся у разных людей, и также потребовать, чтобы деньги не были потрачены до определенного времени в будущем. В отличие от Ethereum, язык биткойна не поддерживает циклы, поэтому скрипты гарантированно завершаются за короткий промежуток времени.

 


Источник: https://hi-news.ru/technology/vse-eshhe-ne-ponimaete-chto-takoe-bitkojn-...

X
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.
6 + 12 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.